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Dynamic scaling: Distinguishing self-organized from generically critical systems
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The dynamic scaling approach separates nonequilibrium critical phenomena into two distinct categories: (a)
those that are “generically” critical due to symmetry and (b) those that are self-organized critical. This
phenomenological approach is demonstrated in the context of interface growth and depinning, where the
surface width obeys the scaling form W(L,sq,s¢+5)=(s/L%)PF(so/LP,s/LP). The quantity L is the linear
system size, s is the total motion of the interface, and s is the amount of growth separating two configurations.
In case (b) the function F has a nontrivial dependence on s, /L? reflecting a diverging correlation length, while

in case (a) it does not.

PACS number(s): 05.40.+j, 64.60.Ht, 68.35.Rh

The scaling behavior exhibited by systems that are out of
equilibrium brings much attention as a result of its ubiquity
in nature and its theoretical challenges. Familiar examples
include diffusion limited aggregation (DLA) [1], ballistic
deposition [2], sandpiles [3], depinning of interfaces in
quenched random media [4], and fluid invasion in a porous
medium [5]. All of these dynamical processes generate scale
invariant spatial structures. Although many of these systems,
such as DLA, are poorly understood, others have yielded to
theoretical insight. Ballistic deposition is a prototypical ex-
ample of kinetic roughening which is known to be described
by a Langevin equation proposed by Kardar, Parisi, and
Zhang [6]. In ballistic deposition, particles rain down at ran-
dom onto a surface following straight trajectories, and stick
upon the first encounter, either vertically or sideways, with
the surface. Similar Langevin equations have been proposed
to describe several other systems, including sandpiles [7].
The term ““generic scale invariance” was coined for nonequi-
librium phenomena that are described by Langevin equa-
tions, which are scale invariant from symmetry consider-
ations or conservation laws [8].

On the other hand, Bak, Tang, and Wiesenfeld [3] have
proposed that large dynamical systems tend to self-organize,
after a long transient, into a critical state (SOC). SOC de-
scribes far from equilibrium phenomena that are history de-
pendent. These systems reach their dynamical attractor in a
time that increases as the system size grows; associated with
the approach to the attractor is a diverging correlation length.
Having reached the stationary state, further growth in the
system takes place intermittently, in terms of bursts or ava-
lanches which are correlated over all spatial and temporal
extents. A prototypical example of SOC behavior in inter-
faces is the Sneppen model for depinning in a quenched
random medium, where interface motion occurs at the weak-
est pinning center [4]. Since both Langevin dynamics and
avalanche dynamics can describe critical behavior in systems
out of equilibrium, it is natural to ask if there is any clear
distinction between the two, or if they are, in fact, equivalent
descriptions of the same phenomena.
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Here, I demonstrate that avalanche dynamics (SOC) can
be distinguished phenomenologically from Langevin dynam-
ics (generic scale invariance) by observing their dynamic
scaling behaviors. A signature of SOC phenomena is a tran-
sient correlation length, in addition to the usual dynamic cor-
relation length, that increases with time and diverges as the
system reaches its stationary limit. Thus, unlike generically
scale invariant systems, SOC systems exhibit different dy-
namic scaling behavior, with different critical exponents,
during a transient self-organization process than in the sta-
tionary state. Both of these transient and stationary scaling
regimes can, however, be unified into a single scaling func-
tion.

For simplicity, I will discuss this dynamic scaling ap-
proach in the context of interfacial growth and kinetic rough-
ening phenomena, although the method is completely gen-
eral. In order to make a clear distinction, I will first review
the conventional description of kinetic roughening [9]. Con-
sider a flat, d-dimensional surface of linear size L, with in-
ternal coordinate x, at time ¢=0. This surface has a well-
defined growth direction, and its configuration is represented
by the single valued function A(x,t) that only increases in
time. The average height of the interface at time ¢ is

— h(f,t)_ s
h(=2, —a=71a> (1)

all x

given an initial flat configuration, A(x,t=0)=0, s(t=0)=0
[10]. Here, the quantity s is the volume separating the cur-
rent configuration from the initial flat configuration. The flat
interface may roughen as it advances as a result of the
buildup of random fluctuations. This roughening can be due
to noise in the force which drives the growth, as in ballistic
deposition, or can arise from defects and inhomogeneities in
the medium through which the interface moves, as in inter-
face depinning. Family and Vicsek [2] showed that a variety
of stochastic interfacial growth models roughen according to
a simple scaling form that can be written as follows:

W()(L,t)=<

1 _ 12
F% [h<x,t>—h(t>]2} >~zﬁFo<t/LZ>.
@
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The mean-squared fluctuations in the height profile of the
interface serve as a measure of its roughness. The brackets
(---) indicate an ensemble average over different realiza-
tions of randomness in the growth process. The crossover
function

Fy(y)~const for y<1

Fo(y)~y™#  for y>1. ®3)
The coefficients 8 and z are the two critical exponents char-
acterizing kinetic roughening processes. Eventually, for
times ¢>L%, the mean-squared height fluctuations reach a
saturation width that has a power law dependence on system
size L, Wy~LX. The roughness exponent obeys the scaling
relation y=2zp.

Similarly, one can consider how the mean-squared height
fluctuations, W(L,ty,t+1t), behave in the late stages of
growth. Now, we compare height profiles between two con-
figurations separated by time ¢, the first configuration at time
to and the second at a later time t+¢,. When #,=0 this
corresponds to Wy,. In the limit ¢5—oo[11],

1 _
W(Lat(]yt0+t)=< ﬁ% {h(x7t0+t)_h(t0+t)_[h(x’t0)

1/2
_E(to)]}z] >~I'BFw(t/LZ) . @)

It is important to note that the function F. has the same
scaling limits as Fq

F,(y)~const for y<1

Fo(y)~y™# for y>1. (5)
The upshot of this formalism is that kinetic roughening both
in early stages and at late stages of growth is governed by the
same two exponents B and z. There is one dynamic correla-
tion length £~ ¢ governing both the early and late stages of
growth.

The reason is that many of these systems are described by
the Kardar, Parisi, Zhang (KPZ) equation [6]:

oh 1
= = V2h+ 2 M(Vh)?+ n(x,0), (6)

or similar Langevin equations. In the KPZ equation, the vari-
able 7 represents Gaussian distributed noise with zero mean.
The coefficient A accounts for lateral growth or sideways
sticking in ballistic deposition. For A =0, one recovers the
Edwards-Wilkinson equation for thermal roughening, which
represents a different universality class. The KPZ equation is
invariant with respect to translations in height, ,—h+c, or
equivalently the overall amount of motion s—s+cL?, and
time r—t¢+c. This invariance requires that the universal
critical exponents are independent of the amount of motion,
or “history” of the interface. This is also the case when the
noise has long range correlations in space and time [12], or is
distributed according to a power law rather than being
Gaussian [13].
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One can choose to represent time in terms of the average
height of the interface, #=s/L%. Substituting t—s/L? and
h(x,t)—h(x,s/L?) gives a unified scaling form:

W(L’S05SO+S)

|

""(S/Ld)ﬂF(SO/Ld+Z,S/LZ+d), (7)

1 12
ZHZ' [h(£’50+s)_h()Z’SO)_S/Ld]Z} >

all x

with the boundary condition that z(x,s,=0)=0. The scaling
function F(z,y) varies smoothly from early stages of
growth, z=0, to late stages of growth, z—. The scaling
behavior in both limits [Egs. (3) and (5)] is the same. This
formalism applies also to equilibrium dynamical phenomena
because the initial condition breaks time translational invari-
ance. Equation (7), with the smooth dependence of F(z,y)
on z, may possibly describe all generically scale invariant
interfacial phenomena. Like equilibrium dynamical systems,
they have the same universal scaling coefficients both in the
early and late stages of growth.

Although the Family-Vicsek scaling form is widely appli-
cable, it cannot describe all irreversible interfacial growth
processes. Irreversible growth phenomena may have a dy-
namical attractor in much the same way that low-
dimensional dynamical systems may have attractors. Associ-
ated with the approach to the attractor may be a second
dynamic correlation length. This means that the behavior
during the transient can be totally different than the behavior
upon reaching the attractor.

For example, it has been demonstrated that a class of SOC
systems, including the Sneppen model, are critical once they
arrive in the stationary state, but have a finite correlation
length for the dynamics during the transient [14-16]. For
this class of models, it can be proven that the transient cor-
relation length diverges as growth proceeds towards the sta-
tionary limit. This divergence of the transient correlation
length will have a signature in the time dependent width; in
particular the function F(z,y) will have different scaling
limits for small z than for z—. I propose that this is gen-
erally true for all SOC phenomena. The presence of a diverg-
ing correlation length for the transient can be observed using
the dynamic scaling approach. This (second) diverging cor-
relation length distinguishes SOC from generically scale in-
variant phenomena.

Actually, Sneppen and Jensen [17] noted that the Family-
Vicsek scaling form did not describe SOC interface depin-
ning in a simple model defined as follows [4]: An interface
on a discrete lattice ( x,# ) moves under the influence of
quenched random pinning forces 7( x,h ) assigned indepen-
dently from a flat distribution in the unit interval. Growth
occurs by advancing the extremal site on the interface with
the smallest pinning force by one step, h—h+1. Then
neighboring sites are advanced to keep the nearest neighbor
gradients less than 1, and the process is repeated. This dy-
namics represents a depinning transition at constant velocity
rather than at constant driving force [16].

In order to proceed, it is convenient to represent dynamic
scaling as follows:
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Wq(L’SO’SO+S)

all x

1 1/q
- < (ZZZ [A(X,50+ ) —h(X,s0) —s/Ld]q) >

~(s/L?)PF 4(so/L”,s/LP). 8

The parameter q is included to allow for possible multifractal
behavior of different moments. Multifractality in the station-
ary state of the Sneppen model [17] was explained by Tang
and Leschhorn [18] and by Olami, Procaccia, and Zeitak
[19]. It arises from the fact that for sufficiently small ava-
lanches, most of the interface is frozen in a static configura-
tion; only a small part of the interface actually moves for-
ward.

The critical coefficient D appears as an ‘“‘avalanche” di-
mension which controls the total amount of growth that must
take place in order to reach the saturation regime. I first
consider the behavior in the transient regime so/LP<1,
where the function F (2<<1,y) = f1,4n5(y). The scaling func-
tion

firans(y)~const for y<1

ftrans(y)~y_ﬁ

At early times, the transient width grows in time as
W~ (s/L%)?; while at late times the width saturates to an L
dependent cutoff W~LA®P =4 This defines the roughness
exponent for the saturation width

x=B(D—ad). (10)

for y>1. 9)

In certain cases, the interface roughness exponent x can
be related to the avalanche dimension D. For interfaces with
a compact avalanche dynamics, the amount of motion s dur-
ing an avalanche scales with its projected area onto the sub-
strate r¢ multiplied by the linear extent , ~rX in the direc-
tion of growth, so s~r%r ~r?TX This also requires that
there is only one length scale for motion in the direction of
growth. Every one of the r¢ sites covered by the avalanche
has finite probability to move ~rX steps forward. This an-
satz, which has been verified numerically for certain models
[16,18—-20], means that the avalanches have the same self-
affine structure as the interface as a whole. For a system of
size L, the avalanches will have a cutoff in their size
Sco~LP~WLA~L*X, s0

x=D—d and B=1. (11)
Actually, as shown later, 8=1 can be understood from a
simple argument based on random deposition. Using differ-
ent arguments, Olami, Procaccia, and Zeitak [19] derived
B=1 for the special case of the one-dimensional Sneppen
model, where B~1 has been measured [4]. Scaling theory,
Eq. (10), suggests that B=1 holds for any SOC interface
model in any dimension as long as the avalanche dimension
D=d+x.

In the stationary regime, s,/L9>1, the scaling function
has a different limit than in the transient regime and also
exhibits multifractality; F (z>1,y)= y@ fq(y). The scal-
ing function
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fq(y)—const for y<1

fa)—y «@7F  for

For small s the width grows as W~ (s/L%P(s/LP)*);
while at long times s, it saturates to the same time indepen-
dent width as in the transient regime, W~LP®P~9 If the
activity in the stationary regime takes place in terms of ava-
lanches, which are bursts over localized regions, the sum
over all lattice sites in Eq. (8) can be replaced with a sum
over the localized area spanned by the avalanche. Since most
of the sites in the system are frozen during the avalanche,
this sum does not depend on L. As a result, the L depen-
dence of the dynamical width must be ~L —4/9 for s<LP.
Thus

y>1. (12)

_df1 13
=5\ -8/ (13)
and the width in the stationary state grows as

Wq~sﬂ((D—d)/D)+(d/qD)L—d/q. (14)

The dynamic exponent for time dependent roughening in the
stationary state,

pO—d) |

Boual @) =" (15)

d
D
is different than the dynamic exponent B for time dependent
roughening during the transient. If =D —d and correspond-
ingly B=1 then

d+qx
W .~ sld+ax)/q(d+x)]f —dlq B A
a3 or Bual) q(d+x) -’

Based on similar arguments, the above results should also
hold for an SOC interface model where the force at each site
on the interface is given by a quenched version of the KPZ
equation:

(16)

F(x,h)=V?h+N(Vh)*+ 5(xX,h), 17)

and the site with the largest force F is advanced at each
sequential time step, s—s+1. Here n(x,h) represents
quenched random pinning forces. For finite A, this model is
believed to be in the same universality class as the Sneppen
model. For A =0, it is in a different universality class which
may describe fluid invasion in a porous medium [15,19,16].

Recently Schmittbuhl et al. introduced a nonlocal model
for SOC contact line depinning and crack propagation in a
quenched random medium [21]. In this case, the local diffu-
sive and nonlinear terms in Eq. (17) are replaced by a non-
local kernel which decays as 1/x2. Despite the nonlocality,
the model appears to have the same phenomenology of SOC
and avalanches as the Sneppen model. These authors de-
scribe the scaling behavior using the Family-Vicsek scaling
form which, as emphasized here, does not distinguish be-
tween transient and stationary state behavior in SOC sys-
tems. It is important to note that they found an exponent
B~1/2 rather than B8=1. This exponent was obtained using
data-collapse techniques for small systems L =32-1024,
rather than by direct measurement of temporal scaling of the
width. It would be useful also to compare a direct measure-
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ment of the avalanche dimension D with their independent
measurement of the surface roughness y. If D=d+ yx, then
B=1 in their model. It would also be interesting to test these
results on other models.

The result B=1 derived from scaling theory reflects a
self-organization process that has a simple and plausible ex-
planation. Consider an SOC interface model, such as Egq.
(17) starting from a flat configuration. Initially, growth oc-
curs randomly throughout the system, and for early times,
the mean-squared-width grows with the number of sequential
advances according to a Poisson distribution, as in the case
of random deposition. After some time, s, correlations have
built up in the system so that the bursts will have a charac-
teristic size s.,(s), spatial extent r ,(s), and width w_,(s).
At length or time scales larger than these cutoff scales, the
process will still be Poissonian because because the system
has not yet organized itself at these scales. Initially growth
occurs by adding blocks of linear extent @ and vertical extent
a, corresponding to the lattice unit size. For random deposi-
tion the mean-squared-width increases with the number of
blocks “dropped” onto the system as

_ (number of drops)
- (site)

2

(vertical size of block)?2. (18)

Initially, then
s
W2=(l7) az. (19)

This relation will be valid as long as the number of drops per
site is small. As the interface advances, this number obvi-
ously increases, so the system is no longer Poissonian at the
scale of the lattice unit. However, the process can still be
described as a random deposition process under a suitable
coarse-graining procedure where the sites and blocks drop-
ping upon them are increased in linear size to be r.,(s). In
the rescaled units, each site will still have a small number of
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blocks. Each block has a mass s.,~72, . Equations (18) and
(19) now hold if s is rescaled by s.,, L is rescaled by r,,

and the block vertical extent is increased to w.,~rX, . This
leads to
o
Sco 2
w Lﬁ (wcoa) . (20)
=

The dependence r,(s) is determined by the requirement that
the number of drops per site is of order unity in the coarse
graining procedure; in order to maintain the Poisson distri-

bution,

s

;:; 1/(D—d)
—(T—)—ay ~1 ) (21)

s
or 7r.,~ Za
rCG
Note that r., is actually the transient correlation length that
leads to different scaling behaviors in the early and late
stages of growth. Using this result, I find

s\28 [ s \WD-d
2
wela -E )

As long as the avalanches have a compact geometrical struc-
ture that is characterized solely by the spatial extent r., and
the extension in the direction of motion, w.,~r%,, then
x=D—d and B=1 for a class of SOC interfacial phenom-
ena.
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